
 

 

 

 
 

 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are  

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

DAC'11, June 5-10, 2011, San Diego, California, USA  
Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00 

 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

Common-Centroid Capacitor Placement Considering 
Systematic and Random Mismatches in Analog Integrated Circuits 

 
Cheng-Wu Lin, Jai-Ming Lin, Yen-Chih Chiu, Chun-Po Huang, and Soon-Jyh Chang 

Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. 
lcw@sscas.ee.ncku.edu.tw; jmlin@ee.ncku.edu.tw; chew@livemail.tw; gppo@sscas.ee.ncku.edu.tw; soon@mail.ncku.edu.tw 

 
ABSTRACT 
One of the most important issues during the analog layout phase 
is to achieve accurate capacitance ratios. However, systematic and 
random mismatches will affect the accuracy of the capacitance 
ratios. A common-centroid placement is helpful to reduce the 
systematic mismatch, but it still needs the property of high 
dispersion to reduce the random mismatch [10]. To deal with this 
problem, we propose a simulated annealing [15] based approach 
to construct a common-centroid placement which exhibits the 
highest possible degree of dispersion. To facilitate this framework, 
we first propose the pair-sequence representation to represent a 
common-centroid placement. Then, we present three operations to 
perturb the representation, which can increase the degree of 
dispersion without breaking the common-centroid constraint in 
the resulting placement. Finally, to enhance the efficiency of our 
simulated annealing based approach, we propose three techniques 
to speed up our program. The experimental results show that our 
placements can simultaneously achieve smaller oxide-gradient-
induced mismatch and larger overall correlation coefficients (i.e., 
higher degree of dispersion) than [10] in all test cases. Besides, 
our program can run much faster than [10] in larger benchmarks. 
Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: 
Design Aids – Layout, Placement and routing 
General Terms: Algorithms, Design 
Keywords: Analog placement, capacitor array 

1. INTRODUCTION 
The key performance of many analog integrated circuits (ICs) 

is related to the accuracy of capacitance ratios [3, 4, 10], such as 
analog-to-digital converters and switched-capacitor circuits [2]. 
Among these circuits, a successive-approximation-register (SAR) 
analog-to-digital converter (ADC) has attracted more attention 
recently due to its low power consumption (see Figure 1), and it is 
widely used in biomedical chips or portable/battery-powered 
instruments. One of the most important components in the SAR 
ADC is a capacitor array, which contains a set of capacitors 
C1, …, Cn+1 and these capacitors have to satisfy a predefined 
capacitance ratio (i.e., C1 = C2, Ci+1 = 2Ci, i = 2, …, n). A 
capacitor array is considered matched if its capacitance ratio 
exactly meets the predefined value. The linearity of the SAR 
ADC is highly related to the matching of the capacitor array. 

A well-matched capacitor array may become mismatched 
after IC manufacturing. The causes of mismatch in IC fabrication 
process can be divided into two categories: systematic mismatch 
and random mismatch [3, 4]. We illustrate each of them in the 

following: 
In the category of systematic mismatch, mechanisms have 

equal effects on each device. Thus, if two devices have identical 
layout size, they suffer the same percentage of difference from the 
mechanisms, which implies that the two devices still keep 
matched. Therefore, given a set of devices with different layout 
sizes, designers prefer to divide every device into several 
identical-layout-size sub-devices to achieve matching. However, 
the presence of process gradients also causes systematic mismatch 
[5]. If two devices have identical layout size but they are placed 
far away from each other in a layout, they would experience 
unequal magnitude of effects due to the process gradients and thus 
exhibit mismatch. Therefore, for a set of devices which require 
matching, they should be placed close to each other in a layout. 
Further, these devices should exhibit symmetry in the layout to 
average the effects induced by process gradients. In order to 
reduce systematic mismatch, designers usually adopt a common-
centroid layout structure [1] to achieve these considerations. 

On the other hand, random mismatch is caused by statistical 
fluctuations in processing conditions or material properties. Since 
these fluctuations are random mechanisms, the sub-devices of 
each device should be distributed throughout a layout as 
uniformly as possible to reduce random mismatch, which means 
that the sub-devices should exhibit the highest possible degree of 
dispersion in a layout [10]. 

Figures 2(a) and 2(b) show two placements for a capacitor 
array according to different layout considerations. The capacitor 
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                        (a)                                                (b) 
Figure 2. Two different placements for a capacitor array. The unit 
capacitors denoted by u3 are colored in gray for a clearer exhibition of 
different placement styles. (a) A common-centroid placement is good 
for reducing systematic mismatch. (b) The placement [10] exhibiting a 
higher degree of dispersion is better for reducing random mismatch.
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Figure 1. Architecture of an n-bit SAR ADC. The linearity of the
SAR ADC is highly related to the matching of the capacitor array. 
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array consists of four capacitors, and each capacitor is divided 
into several identical-layout-size unit capacitors, which are 
denoted by ui, i = 1, …, 4. Figure 2(a) shows a placement with a 
common-centroid structure. In this placement, the unit capacitors 
are placed symmetrically, and the centroid of each capacitor is 
exactly on or close to the center of the layout. Compared with the 
symmetric placement shown in Figure 2(a), Figure 2(b) shows a 
placement that exhibits higher random distribution (note that it is 
constructed based on [10]). Since Figure 2(a) has symmetry 
property, it is good for reducing systematic mismatch [6, 7], but is 
not sufficient to reduce random mismatch due to a lower degree 
of dispersion. On the contrary, the placement in Figure 2(b) 
exhibits a higher degree of dispersion, which is better for 
reducing random mismatch [10]. However, it lacks symmetry 
property to overcome the mismatch caused by process gradients. 
Therefore, in this paper, we would like to propose an 
algorithm to find a common-centroid capacitor placement, 
which possesses the property of high dispersion, to reduce 
systematic and random mismatches simultaneously. 

1.1 Previous Work 
To achieve better matching, the placement of a capacitor array 

is usually implemented by a common-centroid structure. Several 
works [6, 11-14] have studied common-centroid placement. 
Sayed and Dessouky [6] introduced an oxide gradient model to 
estimate the oxide-gradient-induced mismatch. Based on this 
model, they presented a deterministic procedure to construct a 
common-centroid placement. Later, three works used topological 
representations to tackle the placement problem with common-
centroid constraint, such as C-CBL [11], B*-trees [12], and 
sequence-pairs [13]. Recently, Lin et al. [14] proposed a thermal-
driven common-centroid placement algorithm. However, all these 
works did not consider random mismatch, and thus their common-
centroid placements lacked the property of high dispersion. 

To consider random mismatch, Luo et al. [8, 9] introduced a 
spatial correlation model for yield evaluation. They showed that a 
placement with higher correlation coefficients would have better 
matching. Moreover, they proposed a heuristic algorithm to 
obtain a placement with the highest, or near-highest, correlation 
coefficients for yield improvement [10]. Although their placement 
results exhibits a higher degree of dispersion, their placements are 
not common-centroid structure. Therefore, none of existing works 
has presented a method to construct a common-centroid 
placement with the property of high dispersion. 

1.2 Our Contributions 
Although [1] highlights that a common-centroid layout should 

exhibit the property of dispersion, there exists limited works 
discussing how to disperse sub-devices uniformly in a common-
centroid placement. Thus, in this paper, we propose an algorithm 
to construct a placement which has common-centroid structure 
and exhibits the property of high dispersion so that this placement 
can reduce systematic and random mismatches simultaneously. 

Based on the simulated annealing [15], we propose a method 
to deal with the problem of common-centroid capacitor placement 
considering systematic and random mismatches. First, we propose 
the pair-sequence representation to represent a common-centroid 
placement. Since the sub-devices in a pair can be automatically 
placed to the symmetric locations in a layout, the corresponding 
placement can easily satisfy the common-centroid constraint. 
Further, we present three operations to perturb a pair sequence, 
which can increase the degree of dispersion without breaking the 
common-centroid constraint in the resulting placement. Finally, to 
make our simulated annealing based approach more efficient, we 

propose three techniques to speed up our program. The 
experimental results show that our placements can simultaneously 
achieve smaller oxide-gradient-induced mismatch and larger 
overall correlation coefficients (i.e., higher degree of dispersion) 
than [10] in all test cases. Besides, our program can run much 
faster than [10] in larger benchmarks. Since [10] uses partially 
exhaustive search approach, they even cannot obtain result in the 
largest benchmark. 

The remainder of this paper is organized as follows. Section 2 
introduces two models for mismatch estimation. Section 3 
formulates the common-centroid placement problem for capacitor 
arrays. Section 4 describes the transformation between a pair 
sequence and its corresponding placement. Section 5 shows how 
to initialize a pair sequence for a capacitor set. Section 6 presents 
the operations to perturb a pair sequence and the techniques to 
speed up our program. Section 7 reports the experimental results. 
Finally, Section 8 concludes this paper. 

2. BACKGROUND 
The oxide gradient model [6] can be used to estimate the 

oxide-gradient-induced ratio mismatch of a capacitor array. We 
will employ the model to compare the process-gradient-induced 
mismatches of different placements. Besides, the spatial 
correlation model [8, 9] will be applied to measure the degree of 
dispersion for a placement. Due to the limit of space, we do not 
detail the two models. In the next section, we will formulate the 
capacitor placement problem based on the two models. 

3. PROBLEM FORMULATION 
Let C = {C1, C2, …, Cm} denote a set of m capacitors, and each 

capacitor Ci consist of qi unit capacitors (1 ≤ i ≤ m). The ratio of 
C1 : C2 : … : Cm is q1 : q2 : … : qm. Without loss of the generality, 
we assume qi ≤ qj if i < j, where 1 ≤ i, j ≤ m. The total number of 
unit capacitors is denoted by n (i.e., n = q1 + q2 + … + qm). 

Given a capacitor array C and an r×s matrix Ar×s, the capacitor 
placement problem is to assign each unit capacitor of C to a 
unique entry of the matrix, where n = r×s. The objective is to 
minimize the oxide-gradient-induced mismatch and maximize 
the overall correlation coefficients, simultaneously. 

4. PAIR-SEQUENCE REPRESENTATION 
In this section, we first introduce a representation to represent 

the placement of elements in a matrix. Then, we show how to map 
each element in the representation to a unique entry in the matrix. 

4.1 From a Matrix to its Pair Sequence 
In this subsection, we first propose the pair-sequence Pr×s 

representation to denote the placement of n elements in an r×s 
matrix Ar×s. The pair sequence Pr×s = [p1, p2, …, pm] is an array of 
m elements, and each element pi in Pr×s denotes a pair of 
symmetric entries in Ar×s except the first element p1, where m = 
⎣(n+1)/2⎦ and n = r×s. If n is even, the first element p1 still 
denotes a pair of entries in the matrix; however, it denotes only 
one entry in the matrix if n is odd. The subscript r×s of the 
representation indicates the dimension of the matrix mapped by 
the representation. Because the placement of elements may have 
various styles, it is necessary to distinguish those pair sequences 
having the same number of elements but mapping to matrices 
with different dimensions. For example, although the sizes of 
matrices A2×6, A6×2, A3×4, and A4×3 are identical, the dimensions of 
the four matrices are different. To reveal correct information, we 
append a subscript r×s to each pair sequence to denote the 
dimension of the corresponding matrix. 
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Now, we show how to encode the entries of a matrix Ar×s into 
the pair-sequence representation. Let aij denote an ith-row and jth-
column entry in the matrix Ar×s, where 1 ≤ i ≤ r and 1 ≤ j ≤ s. The 
coordinate of aij is denoted by (xi, yj), where xi = i and yj = j. 
Moreover, the matrix Ar×s has a unique center whose coordinate is 
denoted by (xc, yc), where xc = ⎣(r+1)/2⎦ and yc = ⎣(s+1)/2⎦. Let d 
denote the distance from aij to the center of Ar×s, and it can be 
computed by the following equation: 

 2 2( ) ( )i c j cd x x y y= − + −  (1) 

Those entries having the same distance d form a circle, which 
is denoted by Rd. We consider any two entries as a pair if they are 
in the same cycle and their locations are opposite with respect to 
the center of Ar×s, which means the two entries are symmetric to 
each other. After all entries of the matrix are classified into 
different circles, the pairs of entries in a circle are picked out in 
serial counterclockwise from the twelve-o’clock direction. Then, 
we can construct a pair sequence by collecting these pairs from 
the inner circle to the outer circle. Note that the most inner circle 
of a matrix only contains one entry if the matrix comprises an odd 
number of entries. Therefore, the first pair in the corresponding 
pair sequence has only one element. 

Figure 3(a) shows a matrix A3×3. According to the distance d 
of each entry, we can classify the entries into three circles, R0, R1, 
and The circle R0 consists of only one entry a22 because a22 
is located at the center of the matrix (i.e., its distance d to the 
center is zero). The circles R1 and contain the entries {a12, a21, 
a23, a32} and {a11, a13, a31, a33} since the entry distances to the 
center are 1 and 2 , respectively. Then, we start to pair all 
entries in each circle and then construct a pair sequence. Since the 
circle R0 contains only one entry a22, a22 is not paired. For the 
entries in circle R1, we first select entry a12, which is located at 
the twelve-o’clock direction, and then pick its opposite entry a32 
in R1. Since a12 and a32 are symmetric respect to the center of the 
matrix, we consider (a12, a32) as a pair. Following the 
counterclockwise order, we next pick entry a21 and find its 
opposite entry a23, and consider (a21, a23) as another pair. 
Similarly, we pair the entries in circle and then obtain the 
pairs (a11, a33) and (a31, a13). Note that the two entries of a pair 
have an order due to the definition of pairing procedure. After all 
entries are paired, a pair sequence P3×3 can be constructed with 
the ordered pairs from the inner circle to the outer circle. Thus, 
we derive the pair sequence P3×3 = [a22, (a12, a32), (a21, a23), (a11, 
a33), (a31, a13)]. Figure 3(b) shows another matrix A4×4. Similarly, 
we first classify all entries into three circles, and 

and then pair all entries in each circle. Thus, we derive the 
pair sequence P4×4 = [(a22, a33), (a32, a23), (a12, a43), (a21, a34), (a31, 
a24), (a42, a13), (a11, a44), (a41, a14)]. 

4.2 From a Pair Sequence to its Matrix 
We have introduced how to derive a pair sequence from a 

matrix in the previous subsection. Now, we show how to obtain 
the corresponding placement from a pair sequence once the 
materials are arranged to the pair sequence. 

Given a pair sequence Pr×s, we first construct an r×s matrix 
Ar×s according to the subscript of Pr×s. Since each element in a 
pair corresponds to a unique location in the matrix, we only need 
to place the materials located in a pair to the corresponding entries 
in the matrix in serial. For example, given a pair sequence P3×3 = 
[a, (b, c), (d, e), (f, g), (h, i)], we first construct a 3×3 matrix A3×3. 
Since each element in a pair associates with a unique location in 
the matrix, we first place the material “a” in the first pair to the 
corresponding entry a22 in A3×3, as shown in Figure 4(a). Then, the 
materials “b” and “c” in the second pair are placed at the entries 

a12 and a32, and so on. Similarly, Figure 4(b) shows the placement 
of P4×4 = [(a, b), (c, d), (e, f), (g, h), (i, j), (k, l), (m, n), (o, p)]. 

5. PLACEMENT INITIALIZATION 
In this section, we would like to show how to obtain an initial 

matrix placement for a capacitor set, in which all capacitors are 
arranged in a common-centroid structure. In the first subsection, 
the procedure for pairing the unit capacitors in the capacitor set is 
given. After all unit capacitors are paired, we show how to 
arrange these unit-capacitor pairs to obtain a pair sequence, and 
thus a matrix placement can be derived. Finally, an algorithm for 
the whole procedure of pair-sequence initialization is given in the 
last subsection. 

5.1 Unit-Capacitor Pairing 
Unit-capacitor pairing is iteratively to pair two unit capacitors 

in a capacitor set until each unit capacitor belongs to one pair. 
The resulting pairs can be arranged to obtain a pair sequence. For 
each pair in the pair sequence, the associated two unit capacitors 
will be placed in symmetric locations with respect to the center of 
the matrix according to the definition in the last section. Therefore, 
any two unit capacitors belonging to the same capacitor is first 
paired. However, if a capacitor comprises an odd number of unit 
capacitors, one unit capacitor will be left. Thus, for each capacitor 
comprising an odd number of unit capacitors, we first pick out 
one unit capacitor, and the remaining unit capacitors can be paired. 

Given a capacitor set C = {C1, C2, …, Cm}, we assume each 
capacitor Ci contains qi unit capacitors. Let Ci = {ui} denote the 
set of unit capacitors belonging to Ci, where ui denotes one unit 
capacitor in Ci and the size of Ci is qi. Let k denote the number of 
capacitors, where each capacitor has only one unit capacitor, and 
these capacitors form a set, which is denoted by Cunit. Let l denote 
the number of capacitors, where each capacitor comprises an odd 
number of unit capacitors and the number is greater than two (i.e., 
3, 5, …), and the set of these capacitors is denoted by Codd. 
Therefore, the total number of capacitors that each capacitor 
comprises an odd number of unit capacitors is k+l. For each of 
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these capacitors, if we pick one unit capacitor from it, the number 
of its remaining unit capacitors becomes even and they can be 
paired. Then, for the picked unit capacitors (i.e., there exists 
k+l unit capacitors), we can pair them according to the following 
cases: 

 Case 1. k and l are both odd: we pick one unit capacitor 
from k unit capacitors and from l unit capacitors, 
respectively, and consider the two selected unit capacitors 
as a pair. Thus, the remaining unit capacitors can form 
(k-1)/2 and (l-1)/2 pairs. 

 Case 2. k is odd and l is even: we select one unit 
capacitor from k unit capacitors and treat it as a single-
unit pair (i.e., a pair only containing one unit capacitor). 
Thus, the remaining capacitors would form (k-1)/2 and l/2 
pairs. 

 Case 3. k is even and l is odd: if k ≠ 0, we pick one unit 
capacitor from k unit capacitors and consider it as a 
single-unit pair, and thus the remaining unit capacitors 
can be handled by Case 1; if k = 0, we select one unit 
capacitor from l unit capacitors and treat it as a single-
unit pair, and the remaining unit capacitors can form 
(l-1)/2 pairs. 

 Case 4. k and l are both even: the k unit capacitors form 
k/2 pairs, and the l unit capacitors form l/2 pairs. 

After the k+l unit capacitors are paired, we can classify them 
into four types in the following: 

 S(unique, ): it consists of pairs that each pair has only one 
unit capacitor. 

 S(unit, unit): the two unit capacitors come from different 
capacitors in Cunit. 

 S(unit, odd): one of the two unit capacitors belongs to a 
capacitor in Cunit, and the other belongs to a capacitor in 
Codd. 

 S(odd, odd): the two unit capacitors belong to different 
capacitors in Codd. 

After above procedure, the number of the remaining unit 
capacitors in each capacitor becomes even, and thus we can pair 
them completely. These unit-capacitor pairs are classified into the 
following type: 

 S’: the two unit capacitors in a pair belong to the same 
capacitor (comparing to the sets listed in the above). 

Figure 5(a) shows a capacitor set {C1, C2, C3, C4, C5, C6, C7, 
C8}, and the ratio of these capacitors is 1 : 1 : 1 : 1 : 3 : 5 : 6 : 7. 
According to above definition, Cunit = {C1, C2, C3, C4} and Codd = 
{C5, C6, C8}. We first pick one unit capacitor from each of these 
capacitors and try to pair them (i.e., u1, u2, u3, u4, u5, u6, and u8 are 
selected). Since k = 4 and l = 3, it satisfies Case 3. Assume u1 is 
selected from the first four unit capacitors u1, u2, u3, and u4, and it 
is considered as a single-unit pair (i.e., (u1, ) ∈ S(unique, )). Then, the 
remaining three unit capacitors u2, u3, and u4 and the last three 
unit capacitors u5, u6, and u8 are handled according to Case 1. 
Thus, from each of the two groups, we select one unit capacitor 
from it, and consider the two selected unit capacitors as a pair 
(assume (u4, u5) ∈ S(unit, odd) is selected). Finally, the remaining 
capacitors u2, u3, u6, and u8 are paired, which form (u2, u3) ∈ S(unit, 

unit) and (u6, u8) ∈ S(odd, odd). After the above process, the remaining 
unit capacitors in each capacitor are paired, respectively, and they 
are classified into the type S’. 

5.2 Pair Arrangement 
After all unit capacitors in a capacitor set are paired, we can 

arrange these pairs to obtain a pair sequence, and then derive an 

initial matrix placement from it. To obtain a better matrix 
placement, we have to determine a sequence to place these pairs 
into a pair sequence. 

Before we give our procedure, we first analyze the property of 
different kind of capacitors. If a capacitor belongs to Cunit, it is 
better to be placed near to the center of a matrix such that its 
centroid can be close to the matrix's center. If a capacitor belongs 
to Codd, one of its unit capacitors would form a single unit 
capacitor and others form several unit-capacitor pairs. Since each 
unit-capacitor pair can be automatically placed to the symmetric 
locations in the matrix, the capacitor's centroid can be located 
close to the center of the matrix if the single unit capacitor is also 
placed near to the matrix's center. Finally, if a capacitor comprises 
an even number of unit capacitors, its unit capacitors can be 
paired completely. Therefore, its centroid must be exactly at the 
center of the matrix. 

Through the above analysis, some unit capacitors should be 
placed closer to the matrix's center than others in order to get a 
common-centroid placement. If a pair can be arranged near to the 
head of a pair sequence, the placement of the associated unit 
capacitors would be close to the matrix's center; otherwise, its 
placement is far from the matrix's center. Therefore, we give the 
priorities of different pair types in the following: 

 S(unique, ) > S(unit, unit) > S(unit, odd) > S(odd, odd) > S’ 
S(unique, ) > S(unit, unit) means S(unique, ) has a higher priority than S(unit, 

unit), and so on. A pair belonging to a pair type with higher priority 
will be arranged more near to the head of a pair sequence. 

5.3 Algorithm for Pair-Sequence Initialization 
In this subsection, we give the complete procedure for 

initializing a pair sequence (please see Algorithm 1). We first pair 
unit capacitors and divide them into different types (see Line 1). 
Then, we serially place all pairs into a pair sequence according to 
the priorities of the pair types. Since the pairs with the same pair 
type have identical priority, we arrange them into a pair sequence 
according to a deterministic order (see Lines 3-7). 
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                       (a)                                                (b) 
Figure 5. (a) An example of unit-capacitor pairing. (b) The 
corresponding placement in a matrix A5×5. 

Algorithm 1: initializePairSequence(Capacitor array, Matrix size)
/* All unit capacitors are paired and classified into five pair types; */

1: Unit-capacitor pairing for the capacitor array; 
2: Allocate an empty pair sequence; 
3: for highest-priority pair type to lowest-priority pair type do 
4: for all unit-capacitor pairs belonging to the pair type do 
5: Add the pair that has a unit capacitor ui with the smallest index i 

to the end of the pair sequence; 
6: end for 
7: end for 
8: Append the matrix size to the pair sequence; 
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Given the capacitor array shown in Figure 5(a) and a matrix 
A5×5 for placement, Algorithm 1 will generate an initial pair 
sequence P5×5 = [u1, (u2, u3), (u4, u5), (u6, u8), (u5, u5), (u6, u6), (u6, 
u6), (u7, u7), (u7, u7), (u7, u7), (u8, u8), (u8, u8), (u8, u8)]. According 
to the pair sequence, we can derive an initial matrix placement 
near a common-centroid structure, as shown in Figure 5(b). 

6. THE PLACEMENT ALGORITHM 
After an initial matrix placement has been generated, we can 

further apply the simulated annealing (SA) [15] to obtain better 
results. The SA algorithm repeatedly perturbs the pair sequence 
until a predefined termination condition is satisfied. Its objective 
function is to minimize oxide-gradient-induced mismatch and 
maximize overall correlation coefficients simultaneously. In the 
following subsections, we first introduce the operations to perturb 
our representation, and then show our objective function. Finally, 
several techniques used to speed up our program are given in the 
last subsection. 

6.1 Perturbation 
The property of symmetry in a pair sequence should be 

maintained during perturbation. To avoid breaking this property, 
we propose three operations in the following: 

 Op1: it chooses one pair pi which belongs to S(unit, odd) or 
S(odd, odd), and then reverse the order of its unit capacitors. 

 Op2: it chooses two pairs pi and pj from any pair types 
except S’, and then exchange one unit capacitor uk in pi 
with another unit capacitor ul in pj. 

 Op3: it chooses two pairs pi and pj from any pair types 
except S(unique, ), and then exchange the order of pi and pj 
in the pair sequence. 

Since the contents of two pairs are exchanged in Op2, the types of 
the two pairs may be changed after applying the operation. 

6.2 Objective Function 
There exist two major objectives in our program: one is to 

minimum oxide-gradient-induced mismatch, and the other is 
maximum overall correlation coefficients. Let M denote the value 
of oxide-gradient-induced mismatch, and L denote the value of 
overall correlation coefficients. During SA, we will maintain the 
average values for oxide-gradient-induced mismatch and overall 
correlation coefficients, which are denoted by Mavg and Lavg, 
respectively. Thus, an objective function Φ is given as follows: 

 (1 )avg avg

avg avg

M M L L
M L

α α
− −

Φ = × + − ×  (2) 

where α is a user-specified parameter, 0 ≤ α ≤ 1. The goal of our 
algorithm is to find a placement with maximum Φ. 

6.3 Speedup Techniques in Our Program 
Since the SA is a time consuming process, we also propose 

several techniques to speed up our program in the following: 
 Bucket data structure: to facilitate the operations, we 

use the bucket list data structure to record necessary 
information. Figure 6 shows the data structure used in our 
algorithm. There exists a bucket array HB, where each 
entry represents a pair type, and another array HP, which 
stores a pair sequence. For each pair associated with a 
pair type, it is connected to the entry of the type in HB by 
a doubly-linked list. Besides, there also exists a point 
referring to the pair from the pair sequence HB. With this 
data structure, we can easily extract a pair with a 

specified type during perturbation. Once the type of a 
pair is changed after perturbation, we also have to modify 
its information in the corresponding doubly-linked lists. 

 Redundancy elimination: our program neglects 
redundant operations during the SA. For example, for two 
capacitors belonging to Cunit, the resulting placement will 
be geometrically identical to the previous one if their 
positions are exchanged in a placement. Therefore, it is 
considered as a redundant operation. 

 Operation combination: we can enhance the 
convergence of the SA by applying an operation that can 
lead to a large change. Hence, we combine Op1 and Op3 
to get a new perturbation. The operation is to choose two 
pairs pi and pj which belong to any pair types except 
S(unique, ), and then perform one of the following cases: 

 pi and pj execute Op3; then pi executes Op1. 
 pi and pj execute Op3; then pj executes Op1. 
 pi and pj execute Op3; then both pi and pj execute Op1. 

Note such kind of operations might deteriorate the 
solution quality while a solution is going to converge. 
Therefore, we give a higher probability to apply these 
operations at high temperature, but much lower 
probability at low temperature. 

7. EXPERIMENTAL RESULTS 
Our capacitor placement algorithm was implemented in C++ 

and run on a 2.5 GHz Intel Core2 Quad PC. We performed 
experiments on six benchmarks. The first three capacitor arrays, 
which are named SCF_1, SCF_2, and SCF_3, are sourced from [6] 
and [10]. The others are based on the capacitor arrays used in real 
SAR ADCs designed by us. Since their resolutions are 8-bit, 9-bit, 
and 10-bit, respectively, we name them SAR_8bit, SAR_9bit, and 
SAR_10bit, respectively. For fair comparisons, the experiment 
setups are the same as those in [6] and [10]. The oxide thickness 
is 40 nm, oxide gradient is 10 ppm, the correlation coefficient of 
the unit capacitor is 0.9, and the geometry of unit capacitors is 
depicted in Figure 7(a). 

In order to compare our method with related works, we 
implemented the heuristic algorithm [10], and the results are 
shown in Table 1. Columns 2, 3, and 4 in Table 1 show the 
information of a capacitor set, which includes number of 
capacitors, capacitance ratio, and total number of unit capacitors, 
respectively. Column 5 shows the dimension of a matrix for 
placement. For each approach, we show the value of oxide-
gradient-induced mismatch (denoted by M), the value of overall 
correlation coefficients (denoted by L), and the running time, 
respectively. The experimental results show that our placement 
results can simultaneously achieve smaller oxide-gradient-
induced mismatch and larger overall correlation coefficients than 
[10] in all cases. Note [10] cannot obtain result in the largest 
benchmark SAR_10bit. Although our approach is slower than [10] 
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S(odd, odd)

S(unique, )
S(unit, unit)
S(unit, odd)

S’
S(odd, odd)
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(pair sequence)
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(pair sequence)

(ui, uj) (ui, uj) (ui, uj)

Figure 6. The bucket data structure used in our algorithm. 
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in the smaller benchmarks, we can run much fast than [10] in the 
larger benchmarks. Since [10] partially exhaustively searches 
possible combinations and computes the correlation coefficients 
for each combination to obtain the best one, their computational 
time increases significantly while the number of the available 
entries increases. On the contrary, we use SA to enhance our 
results and propose several techniques to speed up SA. That’s 
why we can get better results and run much faster than [10]. 

Figure 7(b) shows our placement result for SCF_3. Compared 
with the placement result shown in Figure 2(b) (note that it is 
constructed based on [10]), our placement has comparable overall 
correlation coefficients (i.e., similarly high degree of dispersion), 
but the symmetry property is better (i.e., common-centroid 
structure). Figure 8 compares three different placements for 
SCF_3. As shown in the figure, since the placement based on [10] 
is not common-centroid structure, it has largest oxide-gradient-
induced mismatch. Although both placements in Figure 2(a) and 
ours are common-centroid structure, we still get smaller oxide-
gradient-induced mismatch because the common-centroid 
placement is enhanced by our SA based approach. 

8. CONCLUSIONS 
We have presented an SA based approach to implement a 

common-centroid placement with the property of high dispersion 
in order to reduce systematic and random mismatches. Besides, 
we have proposed a pair-sequence representation to represent a 
common-centroid placement, and presented the associated 
perturbations to increase the degree of dispersion without 
breaking the common-centroid constraint in the resulting 
placement. The experimental results have shown that our 
common-centroid placement approach is effective to reduce 
capacitor mismatch. 
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Table 1. Comparisons of oxide-gradient-induced mismatches, overall correlation coefficients, and running time for the heuristic algorithm [10] and 
our work. (M: oxide-gradient-induced mismatch; L: overall correlation coefficients) 

Heuristic Algorithm [10] Our Work Array Name # of Cap. Capacitance Ratio # of 
Unit Cap.

Matrix 
Size Max. M (%) L Time (s) Max. M (%) L Time (s)

SCF_1 5 2 : 6 : 7 : 7 : 8 30 6 × 5 0.138 9.651 1 0.109 9.688 3 
SCF_2 5 1 : 2 : 2 : 10 : 17 32 8 × 4 0.679 9.318 1 0.601 9.343 4 
SCF_3 4 1 : 2 : 16 : 45 64 8 × 8 0.650 5.567 2* 0.546 5.571 8 
SAR_8bit 9 1 : 1 : 2 : 4 : 8 : 16 : 32 : 64 : 128 256 16 × 16 0.800 32.074 602 0.720 32.089 188 
SAR_9bit 10 1 : 1 : 2 : 4 : 8 : 16 : 32 : 64 : 128 : 256 512 32 × 16 1.077 38.072 20503 0.979 38.306 591 
SAR_10bit 11 1 : 1 : 2 : 4 : 8 : 16 : 32 : 64 : 128 : 256 : 512 1024 32 × 32 - - -** 1.155 45.400 3706 

*This running time reported in [10] is 46.9 s, but the same algorithm implemented by us takes 2 s. It may be caused from the difference in programming and running platform. 
**No result is reported because the running time is too long. 
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Figure 7. (a) Experiment setup for the geometry of unit capacitors. 
(b) Our placement result for SCF_3. 
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Figure 8. The oxide-gradient-induced mismatches and overall 
correlation coefficients of three different placements for SCF_3. 
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