

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DAC'11, June 5-10, 2011, San Diego, California, USA
Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

Common-Centroid Capacitor Placement Considering
Systematic and Random Mismatches in Analog Integrated Circuits

Cheng-Wu Lin, Jai-Ming Lin, Yen-Chih Chiu, Chun-Po Huang, and Soon-Jyh Chang

Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.
lcw@sscas.ee.ncku.edu.tw; jmlin@ee.ncku.edu.tw; chew@livemail.tw; gppo@sscas.ee.ncku.edu.tw; soon@mail.ncku.edu.tw

ABSTRACT
One of the most important issues during the analog layout phase
is to achieve accurate capacitance ratios. However, systematic and
random mismatches will affect the accuracy of the capacitance
ratios. A common-centroid placement is helpful to reduce the
systematic mismatch, but it still needs the property of high
dispersion to reduce the random mismatch [10]. To deal with this
problem, we propose a simulated annealing [15] based approach
to construct a common-centroid placement which exhibits the
highest possible degree of dispersion. To facilitate this framework,
we first propose the pair-sequence representation to represent a
common-centroid placement. Then, we present three operations to
perturb the representation, which can increase the degree of
dispersion without breaking the common-centroid constraint in
the resulting placement. Finally, to enhance the efficiency of our
simulated annealing based approach, we propose three techniques
to speed up our program. The experimental results show that our
placements can simultaneously achieve smaller oxide-gradient-
induced mismatch and larger overall correlation coefficients (i.e.,
higher degree of dispersion) than [10] in all test cases. Besides,
our program can run much faster than [10] in larger benchmarks.
Categories and Subject Descriptors: B.7.2 [Integrated Circuits]:
Design Aids – Layout, Placement and routing
General Terms: Algorithms, Design
Keywords: Analog placement, capacitor array

1. INTRODUCTION
The key performance of many analog integrated circuits (ICs)

is related to the accuracy of capacitance ratios [3, 4, 10], such as
analog-to-digital converters and switched-capacitor circuits [2].
Among these circuits, a successive-approximation-register (SAR)
analog-to-digital converter (ADC) has attracted more attention
recently due to its low power consumption (see Figure 1), and it is
widely used in biomedical chips or portable/battery-powered
instruments. One of the most important components in the SAR
ADC is a capacitor array, which contains a set of capacitors
C1, …, Cn+1 and these capacitors have to satisfy a predefined
capacitance ratio (i.e., C1 = C2, Ci+1 = 2Ci, i = 2, …, n). A
capacitor array is considered matched if its capacitance ratio
exactly meets the predefined value. The linearity of the SAR
ADC is highly related to the matching of the capacitor array.

A well-matched capacitor array may become mismatched
after IC manufacturing. The causes of mismatch in IC fabrication
process can be divided into two categories: systematic mismatch
and random mismatch [3, 4]. We illustrate each of them in the

following:
In the category of systematic mismatch, mechanisms have

equal effects on each device. Thus, if two devices have identical
layout size, they suffer the same percentage of difference from the
mechanisms, which implies that the two devices still keep
matched. Therefore, given a set of devices with different layout
sizes, designers prefer to divide every device into several
identical-layout-size sub-devices to achieve matching. However,
the presence of process gradients also causes systematic mismatch
[5]. If two devices have identical layout size but they are placed
far away from each other in a layout, they would experience
unequal magnitude of effects due to the process gradients and thus
exhibit mismatch. Therefore, for a set of devices which require
matching, they should be placed close to each other in a layout.
Further, these devices should exhibit symmetry in the layout to
average the effects induced by process gradients. In order to
reduce systematic mismatch, designers usually adopt a common-
centroid layout structure [1] to achieve these considerations.

On the other hand, random mismatch is caused by statistical
fluctuations in processing conditions or material properties. Since
these fluctuations are random mechanisms, the sub-devices of
each device should be distributed throughout a layout as
uniformly as possible to reduce random mismatch, which means
that the sub-devices should exhibit the highest possible degree of
dispersion in a layout [10].

Figures 2(a) and 2(b) show two placements for a capacitor
array according to different layout considerations. The capacitor

u4

u4

u4

u3

u3

u4

u4

u4

u4

u3

u3

u2

u1

u3

u3

u4

u4

u3

u3

u4

u2

u3

u3

u4

u4u4u4u4u4

u4u3u3u3u4

u4u3u3u3u4

u4u4u4u4u4

u4u4u4u4u4

u4

u4

u4

u4

u4

u4

u4u4u4

u4u4u4

u4u4u4

u4

u4

u4

u3

u3

u4

u4

u4

u4

u3

u3

u2

u1

u3

u3

u4

u4

u3

u3

u4

u2

u3

u3

u4

u4u4u4u4u4

u4u3u3u3u4

u4u3u3u3u4

u4u4u4u4u4

u4u4u4u4u4

u4

u4

u4

u4

u4

u4

u4u4u4

u4u4u4

u4u4u4

 u4

u3

u3

u2

u3

u4

u4

u4

u4

u3

u4

u4

u1

u4

u3

u4

u4

u4

u3

u3

u2

u3

u4

u4

u4u4u3u3u4

u4u3u4u3u4

u4u3u4u4u4

u4u3u4u3u4

u4u4u4u4u4

u4

u4

u4

u4

u3

u4

u4u4u4

u4u4u4

u4u4u4

u4

u3

u3

u2

u3

u4

u4

u4

u4

u3

u4

u4

u1

u4

u3

u4

u4

u4

u3

u3

u2

u3

u4

u4

u4u4u3u3u4

u4u3u4u3u4

u4u3u4u4u4

u4u3u4u3u4

u4u4u4u4u4

u4

u4

u4

u4

u3

u4

u4u4u4

u4u4u4

u4u4u4

 (a) (b)
Figure 2. Two different placements for a capacitor array. The unit
capacitors denoted by u3 are colored in gray for a clearer exhibition of
different placement styles. (a) A common-centroid placement is good
for reducing systematic mismatch. (b) The placement [10] exhibiting a
higher degree of dispersion is better for reducing random mismatch.

SAR
Logic+

−

Cn+1 C1C2C3Cn

Vref

Vin

CLK

B1~Bn

Capacitor array (C1=C2, Ci+1=2Ci, i=2~n)

SAR
Logic+

−

Cn+1 C1C2C3Cn

Vref

Vin

CLK

B1~Bn

Capacitor array (C1=C2, Ci+1=2Ci, i=2~n)

Figure 1. Architecture of an n-bit SAR ADC. The linearity of the
SAR ADC is highly related to the matching of the capacitor array.

528

29.3

array consists of four capacitors, and each capacitor is divided
into several identical-layout-size unit capacitors, which are
denoted by ui, i = 1, …, 4. Figure 2(a) shows a placement with a
common-centroid structure. In this placement, the unit capacitors
are placed symmetrically, and the centroid of each capacitor is
exactly on or close to the center of the layout. Compared with the
symmetric placement shown in Figure 2(a), Figure 2(b) shows a
placement that exhibits higher random distribution (note that it is
constructed based on [10]). Since Figure 2(a) has symmetry
property, it is good for reducing systematic mismatch [6, 7], but is
not sufficient to reduce random mismatch due to a lower degree
of dispersion. On the contrary, the placement in Figure 2(b)
exhibits a higher degree of dispersion, which is better for
reducing random mismatch [10]. However, it lacks symmetry
property to overcome the mismatch caused by process gradients.
Therefore, in this paper, we would like to propose an
algorithm to find a common-centroid capacitor placement,
which possesses the property of high dispersion, to reduce
systematic and random mismatches simultaneously.

1.1 Previous Work
To achieve better matching, the placement of a capacitor array

is usually implemented by a common-centroid structure. Several
works [6, 11-14] have studied common-centroid placement.
Sayed and Dessouky [6] introduced an oxide gradient model to
estimate the oxide-gradient-induced mismatch. Based on this
model, they presented a deterministic procedure to construct a
common-centroid placement. Later, three works used topological
representations to tackle the placement problem with common-
centroid constraint, such as C-CBL [11], B*-trees [12], and
sequence-pairs [13]. Recently, Lin et al. [14] proposed a thermal-
driven common-centroid placement algorithm. However, all these
works did not consider random mismatch, and thus their common-
centroid placements lacked the property of high dispersion.

To consider random mismatch, Luo et al. [8, 9] introduced a
spatial correlation model for yield evaluation. They showed that a
placement with higher correlation coefficients would have better
matching. Moreover, they proposed a heuristic algorithm to
obtain a placement with the highest, or near-highest, correlation
coefficients for yield improvement [10]. Although their placement
results exhibits a higher degree of dispersion, their placements are
not common-centroid structure. Therefore, none of existing works
has presented a method to construct a common-centroid
placement with the property of high dispersion.

1.2 Our Contributions
Although [1] highlights that a common-centroid layout should

exhibit the property of dispersion, there exists limited works
discussing how to disperse sub-devices uniformly in a common-
centroid placement. Thus, in this paper, we propose an algorithm
to construct a placement which has common-centroid structure
and exhibits the property of high dispersion so that this placement
can reduce systematic and random mismatches simultaneously.

Based on the simulated annealing [15], we propose a method
to deal with the problem of common-centroid capacitor placement
considering systematic and random mismatches. First, we propose
the pair-sequence representation to represent a common-centroid
placement. Since the sub-devices in a pair can be automatically
placed to the symmetric locations in a layout, the corresponding
placement can easily satisfy the common-centroid constraint.
Further, we present three operations to perturb a pair sequence,
which can increase the degree of dispersion without breaking the
common-centroid constraint in the resulting placement. Finally, to
make our simulated annealing based approach more efficient, we

propose three techniques to speed up our program. The
experimental results show that our placements can simultaneously
achieve smaller oxide-gradient-induced mismatch and larger
overall correlation coefficients (i.e., higher degree of dispersion)
than [10] in all test cases. Besides, our program can run much
faster than [10] in larger benchmarks. Since [10] uses partially
exhaustive search approach, they even cannot obtain result in the
largest benchmark.

The remainder of this paper is organized as follows. Section 2
introduces two models for mismatch estimation. Section 3
formulates the common-centroid placement problem for capacitor
arrays. Section 4 describes the transformation between a pair
sequence and its corresponding placement. Section 5 shows how
to initialize a pair sequence for a capacitor set. Section 6 presents
the operations to perturb a pair sequence and the techniques to
speed up our program. Section 7 reports the experimental results.
Finally, Section 8 concludes this paper.

2. BACKGROUND
The oxide gradient model [6] can be used to estimate the

oxide-gradient-induced ratio mismatch of a capacitor array. We
will employ the model to compare the process-gradient-induced
mismatches of different placements. Besides, the spatial
correlation model [8, 9] will be applied to measure the degree of
dispersion for a placement. Due to the limit of space, we do not
detail the two models. In the next section, we will formulate the
capacitor placement problem based on the two models.

3. PROBLEM FORMULATION
Let C = {C1, C2, …, Cm} denote a set of m capacitors, and each

capacitor Ci consist of qi unit capacitors (1 ≤ i ≤ m). The ratio of
C1 : C2 : … : Cm is q1 : q2 : … : qm. Without loss of the generality,
we assume qi ≤ qj if i < j, where 1 ≤ i, j ≤ m. The total number of
unit capacitors is denoted by n (i.e., n = q1 + q2 + … + qm).

Given a capacitor array C and an r×s matrix Ar×s, the capacitor
placement problem is to assign each unit capacitor of C to a
unique entry of the matrix, where n = r×s. The objective is to
minimize the oxide-gradient-induced mismatch and maximize
the overall correlation coefficients, simultaneously.

4. PAIR-SEQUENCE REPRESENTATION
In this section, we first introduce a representation to represent

the placement of elements in a matrix. Then, we show how to map
each element in the representation to a unique entry in the matrix.

4.1 From a Matrix to its Pair Sequence
In this subsection, we first propose the pair-sequence Pr×s

representation to denote the placement of n elements in an r×s
matrix Ar×s. The pair sequence Pr×s = [p1, p2, …, pm] is an array of
m elements, and each element pi in Pr×s denotes a pair of
symmetric entries in Ar×s except the first element p1, where m =
⎣(n+1)/2⎦ and n = r×s. If n is even, the first element p1 still
denotes a pair of entries in the matrix; however, it denotes only
one entry in the matrix if n is odd. The subscript r×s of the
representation indicates the dimension of the matrix mapped by
the representation. Because the placement of elements may have
various styles, it is necessary to distinguish those pair sequences
having the same number of elements but mapping to matrices
with different dimensions. For example, although the sizes of
matrices A2×6, A6×2, A3×4, and A4×3 are identical, the dimensions of
the four matrices are different. To reveal correct information, we
append a subscript r×s to each pair sequence to denote the
dimension of the corresponding matrix.

529

29.3

Now, we show how to encode the entries of a matrix Ar×s into
the pair-sequence representation. Let aij denote an ith-row and jth-
column entry in the matrix Ar×s, where 1 ≤ i ≤ r and 1 ≤ j ≤ s. The
coordinate of aij is denoted by (xi, yj), where xi = i and yj = j.
Moreover, the matrix Ar×s has a unique center whose coordinate is
denoted by (xc, yc), where xc = ⎣(r+1)/2⎦ and yc = ⎣(s+1)/2⎦. Let d
denote the distance from aij to the center of Ar×s, and it can be
computed by the following equation:

 2 2() ()i c j cd x x y y= − + − (1)

Those entries having the same distance d form a circle, which
is denoted by Rd. We consider any two entries as a pair if they are
in the same cycle and their locations are opposite with respect to
the center of Ar×s, which means the two entries are symmetric to
each other. After all entries of the matrix are classified into
different circles, the pairs of entries in a circle are picked out in
serial counterclockwise from the twelve-o’clock direction. Then,
we can construct a pair sequence by collecting these pairs from
the inner circle to the outer circle. Note that the most inner circle
of a matrix only contains one entry if the matrix comprises an odd
number of entries. Therefore, the first pair in the corresponding
pair sequence has only one element.

Figure 3(a) shows a matrix A3×3. According to the distance d
of each entry, we can classify the entries into three circles, R0, R1,
and The circle R0 consists of only one entry a22 because a22
is located at the center of the matrix (i.e., its distance d to the
center is zero). The circles R1 and contain the entries {a12, a21,
a23, a32} and {a11, a13, a31, a33} since the entry distances to the
center are 1 and 2 , respectively. Then, we start to pair all
entries in each circle and then construct a pair sequence. Since the
circle R0 contains only one entry a22, a22 is not paired. For the
entries in circle R1, we first select entry a12, which is located at
the twelve-o’clock direction, and then pick its opposite entry a32
in R1. Since a12 and a32 are symmetric respect to the center of the
matrix, we consider (a12, a32) as a pair. Following the
counterclockwise order, we next pick entry a21 and find its
opposite entry a23, and consider (a21, a23) as another pair.
Similarly, we pair the entries in circle and then obtain the
pairs (a11, a33) and (a31, a13). Note that the two entries of a pair
have an order due to the definition of pairing procedure. After all
entries are paired, a pair sequence P3×3 can be constructed with
the ordered pairs from the inner circle to the outer circle. Thus,
we derive the pair sequence P3×3 = [a22, (a12, a32), (a21, a23), (a11,
a33), (a31, a13)]. Figure 3(b) shows another matrix A4×4. Similarly,
we first classify all entries into three circles, and

and then pair all entries in each circle. Thus, we derive the
pair sequence P4×4 = [(a22, a33), (a32, a23), (a12, a43), (a21, a34), (a31,
a24), (a42, a13), (a11, a44), (a41, a14)].

4.2 From a Pair Sequence to its Matrix
We have introduced how to derive a pair sequence from a

matrix in the previous subsection. Now, we show how to obtain
the corresponding placement from a pair sequence once the
materials are arranged to the pair sequence.

Given a pair sequence Pr×s, we first construct an r×s matrix
Ar×s according to the subscript of Pr×s. Since each element in a
pair corresponds to a unique location in the matrix, we only need
to place the materials located in a pair to the corresponding entries
in the matrix in serial. For example, given a pair sequence P3×3 =
[a, (b, c), (d, e), (f, g), (h, i)], we first construct a 3×3 matrix A3×3.
Since each element in a pair associates with a unique location in
the matrix, we first place the material “a” in the first pair to the
corresponding entry a22 in A3×3, as shown in Figure 4(a). Then, the
materials “b” and “c” in the second pair are placed at the entries

a12 and a32, and so on. Similarly, Figure 4(b) shows the placement
of P4×4 = [(a, b), (c, d), (e, f), (g, h), (i, j), (k, l), (m, n), (o, p)].

5. PLACEMENT INITIALIZATION
In this section, we would like to show how to obtain an initial

matrix placement for a capacitor set, in which all capacitors are
arranged in a common-centroid structure. In the first subsection,
the procedure for pairing the unit capacitors in the capacitor set is
given. After all unit capacitors are paired, we show how to
arrange these unit-capacitor pairs to obtain a pair sequence, and
thus a matrix placement can be derived. Finally, an algorithm for
the whole procedure of pair-sequence initialization is given in the
last subsection.

5.1 Unit-Capacitor Pairing
Unit-capacitor pairing is iteratively to pair two unit capacitors

in a capacitor set until each unit capacitor belongs to one pair.
The resulting pairs can be arranged to obtain a pair sequence. For
each pair in the pair sequence, the associated two unit capacitors
will be placed in symmetric locations with respect to the center of
the matrix according to the definition in the last section. Therefore,
any two unit capacitors belonging to the same capacitor is first
paired. However, if a capacitor comprises an odd number of unit
capacitors, one unit capacitor will be left. Thus, for each capacitor
comprising an odd number of unit capacitors, we first pick out
one unit capacitor, and the remaining unit capacitors can be paired.

Given a capacitor set C = {C1, C2, …, Cm}, we assume each
capacitor Ci contains qi unit capacitors. Let Ci = {ui} denote the
set of unit capacitors belonging to Ci, where ui denotes one unit
capacitor in Ci and the size of Ci is qi. Let k denote the number of
capacitors, where each capacitor has only one unit capacitor, and
these capacitors form a set, which is denoted by Cunit. Let l denote
the number of capacitors, where each capacitor comprises an odd
number of unit capacitors and the number is greater than two (i.e.,
3, 5, …), and the set of these capacitors is denoted by Codd.
Therefore, the total number of capacitors that each capacitor
comprises an odd number of unit capacitors is k+l. For each of

321 321
3
2
1

3
2
1

2 431 2 431

2

4
3

1
2

4
3

1

Circle = {a22}
Circle = {a12, a21, a23, a32}
Circle = {a11, a13, a31, a33}

0R

1R

2R

Circle = {a22}
Circle = {a12, a21, a23, a32}
Circle = {a11, a13, a31, a33}

0R

1R

2R

row

column

center of the matrix

a23

a21row

column

center of the matrix

a23

a21
row

column

center of the matrix

a34

a21row

column

center of the matrix

a34

a21

Circle = {a22, a23, a32, a33}
Circle = {a12, a13, a21, a24,

a31, a34, a42, a43}
Circle = {a11, a14, a41, a44}

0.5R

2.5R

4.5R

Circle = {a22, a23, a32, a33}
Circle = {a12, a13, a21, a24,

a31, a34, a42, a43}
Circle = {a11, a14, a41, a44}

0.5R

2.5R

4.5R
 (a) (b)
Figure 3. (a) The circles of matrix A3×3, and (a21, a23) is a pair. (b) The
circles of matrix A4×4, and (a21, a34) is a pair.

gch
ead
ibf

gch
ead
ibf

 k
c
a
e

nfo
hbi
jdg
plm

k
c
a
e

nfo
hbi
jdg
plm

 (a) (b)
Figure 4. (a) Placement result of P3×3 = [a, (b, c), (d, e), (f, g), (h, i)].
(b) Placement result of P4×4 = [(a, b), (c, d), (e, f), (g, h), (i, j), (k, l), (m,
n), (o, p)]. 2 ..R

2R

2R

0.5 2.5, , ,,,R R
4.5 ,,R

530

29.3

these capacitors, if we pick one unit capacitor from it, the number
of its remaining unit capacitors becomes even and they can be
paired. Then, for the picked unit capacitors (i.e., there exists
k+l unit capacitors), we can pair them according to the following
cases:

 Case 1. k and l are both odd: we pick one unit capacitor
from k unit capacitors and from l unit capacitors,
respectively, and consider the two selected unit capacitors
as a pair. Thus, the remaining unit capacitors can form
(k-1)/2 and (l-1)/2 pairs.

 Case 2. k is odd and l is even: we select one unit
capacitor from k unit capacitors and treat it as a single-
unit pair (i.e., a pair only containing one unit capacitor).
Thus, the remaining capacitors would form (k-1)/2 and l/2
pairs.

 Case 3. k is even and l is odd: if k ≠ 0, we pick one unit
capacitor from k unit capacitors and consider it as a
single-unit pair, and thus the remaining unit capacitors
can be handled by Case 1; if k = 0, we select one unit
capacitor from l unit capacitors and treat it as a single-
unit pair, and the remaining unit capacitors can form
(l-1)/2 pairs.

 Case 4. k and l are both even: the k unit capacitors form
k/2 pairs, and the l unit capacitors form l/2 pairs.

After the k+l unit capacitors are paired, we can classify them
into four types in the following:

 S(unique,): it consists of pairs that each pair has only one
unit capacitor.

 S(unit, unit): the two unit capacitors come from different
capacitors in Cunit.

 S(unit, odd): one of the two unit capacitors belongs to a
capacitor in Cunit, and the other belongs to a capacitor in
Codd.

 S(odd, odd): the two unit capacitors belong to different
capacitors in Codd.

After above procedure, the number of the remaining unit
capacitors in each capacitor becomes even, and thus we can pair
them completely. These unit-capacitor pairs are classified into the
following type:

 S’: the two unit capacitors in a pair belong to the same
capacitor (comparing to the sets listed in the above).

Figure 5(a) shows a capacitor set {C1, C2, C3, C4, C5, C6, C7,
C8}, and the ratio of these capacitors is 1 : 1 : 1 : 1 : 3 : 5 : 6 : 7.
According to above definition, Cunit = {C1, C2, C3, C4} and Codd =
{C5, C6, C8}. We first pick one unit capacitor from each of these
capacitors and try to pair them (i.e., u1, u2, u3, u4, u5, u6, and u8 are
selected). Since k = 4 and l = 3, it satisfies Case 3. Assume u1 is
selected from the first four unit capacitors u1, u2, u3, and u4, and it
is considered as a single-unit pair (i.e., (u1,) ∈ S(unique,)). Then, the
remaining three unit capacitors u2, u3, and u4 and the last three
unit capacitors u5, u6, and u8 are handled according to Case 1.
Thus, from each of the two groups, we select one unit capacitor
from it, and consider the two selected unit capacitors as a pair
(assume (u4, u5) ∈ S(unit, odd) is selected). Finally, the remaining
capacitors u2, u3, u6, and u8 are paired, which form (u2, u3) ∈ S(unit,

unit) and (u6, u8) ∈ S(odd, odd). After the above process, the remaining
unit capacitors in each capacitor are paired, respectively, and they
are classified into the type S’.

5.2 Pair Arrangement
After all unit capacitors in a capacitor set are paired, we can

arrange these pairs to obtain a pair sequence, and then derive an

initial matrix placement from it. To obtain a better matrix
placement, we have to determine a sequence to place these pairs
into a pair sequence.

Before we give our procedure, we first analyze the property of
different kind of capacitors. If a capacitor belongs to Cunit, it is
better to be placed near to the center of a matrix such that its
centroid can be close to the matrix's center. If a capacitor belongs
to Codd, one of its unit capacitors would form a single unit
capacitor and others form several unit-capacitor pairs. Since each
unit-capacitor pair can be automatically placed to the symmetric
locations in the matrix, the capacitor's centroid can be located
close to the center of the matrix if the single unit capacitor is also
placed near to the matrix's center. Finally, if a capacitor comprises
an even number of unit capacitors, its unit capacitors can be
paired completely. Therefore, its centroid must be exactly at the
center of the matrix.

Through the above analysis, some unit capacitors should be
placed closer to the matrix's center than others in order to get a
common-centroid placement. If a pair can be arranged near to the
head of a pair sequence, the placement of the associated unit
capacitors would be close to the matrix's center; otherwise, its
placement is far from the matrix's center. Therefore, we give the
priorities of different pair types in the following:

 S(unique,) > S(unit, unit) > S(unit, odd) > S(odd, odd) > S’
S(unique,) > S(unit, unit) means S(unique,) has a higher priority than S(unit,

unit), and so on. A pair belonging to a pair type with higher priority
will be arranged more near to the head of a pair sequence.

5.3 Algorithm for Pair-Sequence Initialization
In this subsection, we give the complete procedure for

initializing a pair sequence (please see Algorithm 1). We first pair
unit capacitors and divide them into different types (see Line 1).
Then, we serially place all pairs into a pair sequence according to
the priorities of the pair types. Since the pairs with the same pair
type have identical priority, we arrange them into a pair sequence
according to a deterministic order (see Lines 3-7).

u8

u5

u4

u6

u7

u6

u3

u1

u2

u6

u8u7u8

u7u8u7

u6u5u6

u7u5u7

u8u8u8

u8

u5

u4

u6

u7

u6

u3

u1

u2

u6

u8u7u8

u7u8u7

u6u5u6

u7u5u7

u8u8u8

Pair ∈ S(unique,)

Unit capacitor ui

Pair ∈ S(unit, unit)

Pair ∈ S(unit, odd)

Pair ∈ S(odd, odd)

Pair ∈ S’
1 1 1 1 3 5 6 7

C1 C2 C3 C4 C5 C6 C7 C8

qi Pair ∈ S(unique,)

Unit capacitor ui

Pair ∈ S(unit, unit)

Pair ∈ S(unit, odd)

Pair ∈ S(odd, odd)

Pair ∈ S’
Pair ∈ S(unique,)

Unit capacitor ui

Pair ∈ S(unit, unit)

Pair ∈ S(unit, odd)

Pair ∈ S(odd, odd)

Pair ∈ S’
1 1 1 1 3 5 6 7

C1 C2 C3 C4 C5 C6 C7 C8

qi 1 1 1 1 3 5 6 7
C1 C2 C3 C4 C5 C6 C7 C8

qi

 (a) (b)
Figure 5. (a) An example of unit-capacitor pairing. (b) The
corresponding placement in a matrix A5×5.

Algorithm 1: initializePairSequence(Capacitor array, Matrix size)
/* All unit capacitors are paired and classified into five pair types; */

1: Unit-capacitor pairing for the capacitor array;
2: Allocate an empty pair sequence;
3: for highest-priority pair type to lowest-priority pair type do
4: for all unit-capacitor pairs belonging to the pair type do
5: Add the pair that has a unit capacitor ui with the smallest index i

to the end of the pair sequence;
6: end for
7: end for
8: Append the matrix size to the pair sequence;

531

29.3

Given the capacitor array shown in Figure 5(a) and a matrix
A5×5 for placement, Algorithm 1 will generate an initial pair
sequence P5×5 = [u1, (u2, u3), (u4, u5), (u6, u8), (u5, u5), (u6, u6), (u6,
u6), (u7, u7), (u7, u7), (u7, u7), (u8, u8), (u8, u8), (u8, u8)]. According
to the pair sequence, we can derive an initial matrix placement
near a common-centroid structure, as shown in Figure 5(b).

6. THE PLACEMENT ALGORITHM
After an initial matrix placement has been generated, we can

further apply the simulated annealing (SA) [15] to obtain better
results. The SA algorithm repeatedly perturbs the pair sequence
until a predefined termination condition is satisfied. Its objective
function is to minimize oxide-gradient-induced mismatch and
maximize overall correlation coefficients simultaneously. In the
following subsections, we first introduce the operations to perturb
our representation, and then show our objective function. Finally,
several techniques used to speed up our program are given in the
last subsection.

6.1 Perturbation
The property of symmetry in a pair sequence should be

maintained during perturbation. To avoid breaking this property,
we propose three operations in the following:

 Op1: it chooses one pair pi which belongs to S(unit, odd) or
S(odd, odd), and then reverse the order of its unit capacitors.

 Op2: it chooses two pairs pi and pj from any pair types
except S’, and then exchange one unit capacitor uk in pi
with another unit capacitor ul in pj.

 Op3: it chooses two pairs pi and pj from any pair types
except S(unique,), and then exchange the order of pi and pj
in the pair sequence.

Since the contents of two pairs are exchanged in Op2, the types of
the two pairs may be changed after applying the operation.

6.2 Objective Function
There exist two major objectives in our program: one is to

minimum oxide-gradient-induced mismatch, and the other is
maximum overall correlation coefficients. Let M denote the value
of oxide-gradient-induced mismatch, and L denote the value of
overall correlation coefficients. During SA, we will maintain the
average values for oxide-gradient-induced mismatch and overall
correlation coefficients, which are denoted by Mavg and Lavg,
respectively. Thus, an objective function Φ is given as follows:

 (1)avg avg

avg avg

M M L L
M L

α α
− −

Φ = × + − × (2)

where α is a user-specified parameter, 0 ≤ α ≤ 1. The goal of our
algorithm is to find a placement with maximum Φ.

6.3 Speedup Techniques in Our Program
Since the SA is a time consuming process, we also propose

several techniques to speed up our program in the following:
 Bucket data structure: to facilitate the operations, we

use the bucket list data structure to record necessary
information. Figure 6 shows the data structure used in our
algorithm. There exists a bucket array HB, where each
entry represents a pair type, and another array HP, which
stores a pair sequence. For each pair associated with a
pair type, it is connected to the entry of the type in HB by
a doubly-linked list. Besides, there also exists a point
referring to the pair from the pair sequence HB. With this
data structure, we can easily extract a pair with a

specified type during perturbation. Once the type of a
pair is changed after perturbation, we also have to modify
its information in the corresponding doubly-linked lists.

 Redundancy elimination: our program neglects
redundant operations during the SA. For example, for two
capacitors belonging to Cunit, the resulting placement will
be geometrically identical to the previous one if their
positions are exchanged in a placement. Therefore, it is
considered as a redundant operation.

 Operation combination: we can enhance the
convergence of the SA by applying an operation that can
lead to a large change. Hence, we combine Op1 and Op3
to get a new perturbation. The operation is to choose two
pairs pi and pj which belong to any pair types except
S(unique,), and then perform one of the following cases:

 pi and pj execute Op3; then pi executes Op1.
 pi and pj execute Op3; then pj executes Op1.
 pi and pj execute Op3; then both pi and pj execute Op1.

Note such kind of operations might deteriorate the
solution quality while a solution is going to converge.
Therefore, we give a higher probability to apply these
operations at high temperature, but much lower
probability at low temperature.

7. EXPERIMENTAL RESULTS
Our capacitor placement algorithm was implemented in C++

and run on a 2.5 GHz Intel Core2 Quad PC. We performed
experiments on six benchmarks. The first three capacitor arrays,
which are named SCF_1, SCF_2, and SCF_3, are sourced from [6]
and [10]. The others are based on the capacitor arrays used in real
SAR ADCs designed by us. Since their resolutions are 8-bit, 9-bit,
and 10-bit, respectively, we name them SAR_8bit, SAR_9bit, and
SAR_10bit, respectively. For fair comparisons, the experiment
setups are the same as those in [6] and [10]. The oxide thickness
is 40 nm, oxide gradient is 10 ppm, the correlation coefficient of
the unit capacitor is 0.9, and the geometry of unit capacitors is
depicted in Figure 7(a).

In order to compare our method with related works, we
implemented the heuristic algorithm [10], and the results are
shown in Table 1. Columns 2, 3, and 4 in Table 1 show the
information of a capacitor set, which includes number of
capacitors, capacitance ratio, and total number of unit capacitors,
respectively. Column 5 shows the dimension of a matrix for
placement. For each approach, we show the value of oxide-
gradient-induced mismatch (denoted by M), the value of overall
correlation coefficients (denoted by L), and the running time,
respectively. The experimental results show that our placement
results can simultaneously achieve smaller oxide-gradient-
induced mismatch and larger overall correlation coefficients than
[10] in all cases. Note [10] cannot obtain result in the largest
benchmark SAR_10bit. Although our approach is slower than [10]

S(unit, unit)
S(unit, odd)

S’
S(odd, odd)

S(unique,)
S(unit, unit)
S(unit, odd)

S’
S(odd, odd)

S(unique,)

p2 p3 pm………p1 p2 p3 pm………p1

- - -

bucket array HB

array HP
(pair sequence)

(ui, uj) (ui, uj) (ui, uj)- - -

bucket array HB

array HP
(pair sequence)

(ui, uj) (ui, uj) (ui, uj)

Figure 6. The bucket data structure used in our algorithm.

532

29.3

in the smaller benchmarks, we can run much fast than [10] in the
larger benchmarks. Since [10] partially exhaustively searches
possible combinations and computes the correlation coefficients
for each combination to obtain the best one, their computational
time increases significantly while the number of the available
entries increases. On the contrary, we use SA to enhance our
results and propose several techniques to speed up SA. That’s
why we can get better results and run much faster than [10].

Figure 7(b) shows our placement result for SCF_3. Compared
with the placement result shown in Figure 2(b) (note that it is
constructed based on [10]), our placement has comparable overall
correlation coefficients (i.e., similarly high degree of dispersion),
but the symmetry property is better (i.e., common-centroid
structure). Figure 8 compares three different placements for
SCF_3. As shown in the figure, since the placement based on [10]
is not common-centroid structure, it has largest oxide-gradient-
induced mismatch. Although both placements in Figure 2(a) and
ours are common-centroid structure, we still get smaller oxide-
gradient-induced mismatch because the common-centroid
placement is enhanced by our SA based approach.

8. CONCLUSIONS
We have presented an SA based approach to implement a

common-centroid placement with the property of high dispersion
in order to reduce systematic and random mismatches. Besides,
we have proposed a pair-sequence representation to represent a
common-centroid placement, and presented the associated
perturbations to increase the degree of dispersion without
breaking the common-centroid constraint in the resulting
placement. The experimental results have shown that our
common-centroid placement approach is effective to reduce
capacitor mismatch.

9. ACKNOWLEDGEMENTS
This work was supported in part by National Science Council

of Taiwan under Grant No’s NSC-99-2220-E-006-019 and NSC-
98-2221-E-006-156-MY3.

10. REFERENCES
[1] A. Hastings, The Art of Analog Layout, 2nd Ed., Prentice Hall, 2006.
[2] D. A. Johns and K. Martin, Analog Integrated Circuit Design, Wiley, 1997.
[3] M. J. McNutt, S. LeMarquis, and J. L. Dunkley, “Systematic capacitance

matching errors and corrective layout procedures,” IEEE JSSC, vol. 29, no. 5,
pp. 611-616, May. 1994.

[4] J.-B. Shyu, G. C. Temes, and F. Krummenacher, “Random error effects in
matched MOS capacitors and current sources,” IEEE JSSC, vol. 19, no. 6, pp.
948-956, Dec. 1984.

[5] E. Felt, A. Narayan, and A. Sangiovanni-Vincentelli, “Measurement and
modeling of MOS transistor current mismatch in analog IC’s,” Proc. ICCAD,
1994, pp. 272-277.

[6] D. Sayed and M. Dessouky, “Automatic generation of common-centroid
capacitor arrays with arbitrary capacitor ratio,” Proc. DATE, 2002, pp. 576-
580.

[7] D. Khalil, M. Dessouky, V. Bourguet, M.-M. Louerat, A. Cathelin, and H.
Ragai, “Evaluation of capacitor ratios in automated accurate common-centroid
capacitor arrays,” Proc. ISQED, 2005, pp. 143-147.

[8] P.-W. Luo, J.-E Chen, C.-L. Wey, L.-C. Cheng, J.-J. Chen, and W.-C. Wu,
“Impact of capacitance correlation on yield enhancement of mixed-
signal/analog integrated circuits,” IEEE TCAD, vol. 27, no. 11, pp. 2097-2101,
Nov. 2008.

[9] J.-E Chen, P.-W. Luo, and C.-L. Wey, “Yield evaluation of analog placement
with arbitrary capacitor ratio,” Proc. ISQED, 2009, pp. 179-184.

[10] J.-E Chen, P.-W. Luo, and C.-L. Wey, “Placement optimization for yield
improvement of switched-capacitor analog integrated circuits,” IEEE TCAD,
vol. 29, no. 2, pp. 313-318, Feb. 2010.

[11] Q. Ma, E. F. Y. Young, and K. P. Pun, “Analog placement with common
centroid constraints,” Proc. ICCAD, 2007, pp. 579-585.

[12] M. Strasser, M. Eick, H. Graeb, U. Schlichtmann, and F. M. Johannes,
“Deterministic analog circuit placement using hierarchically bounded
enumeration and enhanced shape functions,” Proc. ICCAD, 2008, pp. 306-313.

[13] L. Xiao and E. F. Y. Young, “Analog placement with common centroid and 1-
D symmetry sonstraints,” Proc. ASPDAC, 2009, pp. 353-360.

[14] P.-H. Lin, H. Zhang, M. D. F. Wong, and Y.-W. Chang, “Thermal-driven
analog placement considering device matching,” Proc. DAC, 2009, pp. 593-
598.

[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983.

Table 1. Comparisons of oxide-gradient-induced mismatches, overall correlation coefficients, and running time for the heuristic algorithm [10] and
our work. (M: oxide-gradient-induced mismatch; L: overall correlation coefficients)

Heuristic Algorithm [10] Our Work Array Name # of Cap. Capacitance Ratio # of
Unit Cap.

Matrix
Size Max. M (%) L Time (s) Max. M (%) L Time (s)

SCF_1 5 2 : 6 : 7 : 7 : 8 30 6 × 5 0.138 9.651 1 0.109 9.688 3
SCF_2 5 1 : 2 : 2 : 10 : 17 32 8 × 4 0.679 9.318 1 0.601 9.343 4
SCF_3 4 1 : 2 : 16 : 45 64 8 × 8 0.650 5.567 2* 0.546 5.571 8
SAR_8bit 9 1 : 1 : 2 : 4 : 8 : 16 : 32 : 64 : 128 256 16 × 16 0.800 32.074 602 0.720 32.089 188
SAR_9bit 10 1 : 1 : 2 : 4 : 8 : 16 : 32 : 64 : 128 : 256 512 32 × 16 1.077 38.072 20503 0.979 38.306 591
SAR_10bit 11 1 : 1 : 2 : 4 : 8 : 16 : 32 : 64 : 128 : 256 : 512 1024 32 × 32 - - -** 1.155 45.400 3706

*This running time reported in [10] is 46.9 s, but the same algorithm implemented by us takes 2 s. It may be caused from the difference in programming and running platform.
**No result is reported because the running time is too long.

u4

u4

u3

u2

u3

u4

u4

u4

u3

u4

u4

u3

u4

u3

u4

u4

u4

u4

u3

u1

u3

u4

u4

u3

u4u4u3u4u4

u4u4u2u3u4

u4u3u3u4u4

u3u4u4u4u4

u4u4u4u4u4

u4

u4

u4

u4

u4

u4

u3u4u4

u4u4u3

u4u4u3

u4

u4

u3

u2

u3

u4

u4

u4

u3

u4

u4

u3

u4

u3

u4

u4

u4

u4

u3

u1

u3

u4

u4

u3

u4u4u3u4u4

u4u4u2u3u4

u4u3u3u4u4

u3u4u4u4u4

u4u4u4u4u4

u4

u4

u4

u4

u4

u4

u3u4u4

u4u4u3

u4u4u3

ui ui

ui ui

9.1 µm25 µm

25 µm

2.6 µm

ui ui

ui ui

9.1 µm25 µm

25 µm

2.6 µm

 (a) (b)
Figure 7. (a) Experiment setup for the geometry of unit capacitors.
(b) Our placement result for SCF_3.

5.5380.603Fig. 2(a)

5.5710.546Fig. 7(b)
5.5670.650Fig. 2(b)

LMax. M (%)
5.5380.603Fig. 2(a)

5.5710.546Fig. 7(b)
5.5670.650Fig. 2(b)

LMax. M (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 30 60 90 120 150 180
Angle (degrees)

M
is

m
at

ch
 (%

)

M : oxide-gradient-induced mismatch
L : overall correlation coefficients

Fig. 2(b) [10]
Fig. 2(a)
Fig. 7(b) (our work)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 30 60 90 120 150 180
Angle (degrees)

M
is

m
at

ch
 (%

)

M : oxide-gradient-induced mismatch
L : overall correlation coefficients

Fig. 2(b) [10]
Fig. 2(a)
Fig. 7(b) (our work)

M : oxide-gradient-induced mismatch
L : overall correlation coefficients

Fig. 2(b) [10]
Fig. 2(a)
Fig. 7(b) (our work)

Figure 8. The oxide-gradient-induced mismatches and overall
correlation coefficients of three different placements for SCF_3.

533

29.3

